Wednesday, February 14, 2018

More trading bots

Smarticles, or smart active particles, are small robots equipped with only basic movement and sensing abilities that are incapable of rotating or displacing individually. We study the ensemble behavior of smarticles, i.e., the behavior a collective of these very simple computational elements can achieve, and how such behavior can be implemented using minimal programming. We show that an ensemble of smarticles constrained to remain close to one another (which we call a supersmarticle), achieves directed locomotion toward or away from a light source, a phenomenon known as phototaxing. We present experimental and theoretical models of phototactic supersmarticles that collectively move with a directed displacement in response to light. The motion of the supersmarticle is approximately Brownian, and is a result of chaotic interactions among smarticles. The system can be directed by introducing asymmetries among the individual smarticle's behavior, in our case by varying activity levels in response to light, resulting in supersmarticle biased motion.

Skip the mechanics, let the hedge funds have the algorithm for their trading bots.  Let us see if the escrow routers can keep  up.  The sandbox is a thrill.

 Reading about their theory of bot movement sound eerily like our proofs. Index theory being about getting the system to look like an interleaving problem with some small number of queuing generators combining, locally, with a typical sequence. In a way, pricing  is the natural interleaving problem, so we look like the general theory of sphere packing.

No comments: