Copied from Wolfram cyclotomic polynomials. Who are they? These guys are rewriting science as we know it, they are brilliant. I am a hack, an amateur. I know what is happening, but I can only occassionaly work around the edges.

What is happening is these polynomials have an associated recursive integer set. The polynomials will be mapped to standard physics, and integerized on the unit circle. Much like Schrodinger, except the result will be a proton that is stable with only local knowledge anywhere, the finite element version of quantum physics. Its happening, I wish I were smarter.

The physicists get it, Weinberg, Higgs, all of them are in on the game. These are exciting times.
REFERENCES:
Apostol, T. M. "Resultants of Cyclotomic Polynomials." *Proc. Amer.
Math. Soc.* **24**, 457-462, 1970.

Apostol, T. M. "The Resultant of the Cyclotomic Polynomials

and

."

*Math. Comput.* **29**,
1-6, 1975.

Beiter, M. "The Midterm Coefficient of the Cyclotomic Polynomial

."

*Amer. Math. Monthly* **71**, 769-770, 1964.

Beiter, M. "Magnitude of the Coefficients of the Cyclotomic Polynomial

."

*Amer. Math. Monthly* **75**,
370-372, 1968.

Bloom, D. M. "On the Coefficients of the Cyclotomic Polynomials."
*Amer. Math. Monthly* **75**, 372-377, 1968.

Brent, R. P. "On Computing Factors of Cyclotomic Polynomials." *Math.
Comput.* **61**, 131-149, 1993.

Carlitz, L. "The Number of Terms in the Cyclotomic Polynomial

."

*Amer. Math. Monthly* **73**, 979-981, 1966.

de Bruijn, N. G. "On the Factorization of Cyclic Groups." *Indag.
Math.* **15**, 370-377, 1953.

Dickson, L. E.; Mitchell, H. H.; Vandiver, H. S.; and Wahlin, G. E.

*Algebraic
Numbers.* Bull Nat. Res. Council, Vol. 5, Part 3, No. 28. Washington,
DC: National Acad. Sci., 1923.

Diederichsen, F.-E. "Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz." *Abh. Math. Sem. Hanisches Univ.* **13**,
357-412, 1940.

Lam, T. Y. and Leung, K. H. "On the Cyclotomic Polynomial

."

*Amer. Math. Monthly* **103**, 562-564, 1996.

Lehmer, E. "On the Magnitude of the Coefficients of the Cyclotomic Polynomial."
*Bull. Amer. Math. Soc.* **42**, 389-392, 1936.

Migotti, A. "Zur Theorie der Kreisteilungsgleichung." *Sitzber. Math.-Naturwiss.
Classe der Kaiser. Akad. der Wiss., Wien* **87**, 7-14, 1883.

Nagell, T. "The Cyclotomic Polynomials" and "The Prime Divisors of the Cyclotomic Polynomial." §46 and 48 in

*Introduction
to Number Theory.* New York: Wiley, pp. 158-160 and 164-168, 1951.