Sunday, October 26, 2014

My numbers

These numbers are me using the rational ratio for Phi. If I use the limit of Lucas  and actual Phi, I get -137.1590861574, which about right. Using rational ratio, my entropy in pi is a lower than the actual fine structure, .006 instead of .007.  However, that is likely a selection error on my part. I have the titles and Fibonacci  numbers both in the chart. I think there is a trade where adding more degrees of freedom and suffer a bit of error in Pi yield a better stability for the atom. The odd orbital shapes happen because the entire power series is not used everywhere. The Lucas number do not actually divide out a rational ratio, they count up to the maximum degree, (L number)  then count down, in a quantum oscillation. Everything is done by n, the Lucas quant, no time or space. It looks like everything in the nucleus and orbitals is composed of just 16-20 integer counts.  Separability by primes insure that they combine in the proper two or three integers near the surface of a sphere.






1.619047619   rational ratio.
n Ph()^n p^n-p^-n/p^n+p^-n 1- ratio^2
1 1.619047619 0.4477144646 0.7995517582
2 2.6213151927 0.7459121502 0.4436150642
3 4.2440341216 0.8948023173 0.199328813
4 6.8712933397 0.958518851 0.0812416123
5 11.1249511214 0.9839698039 0.031803425
6 18.0118256252 0.993854207 0.0122538153
7 29.1620033931 0.9976509898 0.0046925025


sum of 1.5677944879

Rational phi sum of 1.5724869905
1 2

2 1.5 error from pi/2 0.0030018388
3 1.6666666667 error from pi/2 -0.0016906637
5 1.6

8 1.625
0.0060036777
13 1.6153846154

21 1.619047619

34 1.6176470588

55 1.6181818182

89 1.6179775281

144 1.6180555556

233 1.6180257511

377 0

No comments: