What is happening is these polynomials have an associated recursive integer set. The polynomials will be mapped to standard physics, and integerized on the unit circle. Much like Schrodinger, except the result will be a proton that is stable with only local knowledge anywhere, the finite element version of quantum physics. Its happening, I wish I were smarter.
The physicists get it, Weinberg, Higgs, all of them are in on the game. These are exciting times.
REFERENCES:
Apostol, T. M. "Resultants of Cyclotomic Polynomials." Proc. Amer.
Math. Soc. 24, 457-462, 1970.
Apostol, T. M. "The Resultant of the Cyclotomic Polynomials and ." Math. Comput. 29,
1-6, 1975.
Beiter, M. "The Midterm Coefficient of the Cyclotomic Polynomial ."
Amer. Math. Monthly 71, 769-770, 1964.
Beiter, M. "Magnitude of the Coefficients of the Cyclotomic Polynomial ." Amer. Math. Monthly 75,
370-372, 1968.
Bloom, D. M. "On the Coefficients of the Cyclotomic Polynomials."
Amer. Math. Monthly 75, 372-377, 1968.
Brent, R. P. "On Computing Factors of Cyclotomic Polynomials." Math.
Comput. 61, 131-149, 1993.
Carlitz, L. "The Number of Terms in the Cyclotomic Polynomial ."
Amer. Math. Monthly 73, 979-981, 1966.
Conway, J. H. and Guy, R. K. The
Book of Numbers. New York: Springer-Verlag, 1996.
de Bruijn, N. G. "On the Factorization of Cyclic Groups." Indag.
Math. 15, 370-377, 1953.
Dickson, L. E.; Mitchell, H. H.; Vandiver, H. S.; and Wahlin, G. E. Algebraic
Numbers. Bull Nat. Res. Council, Vol. 5, Part 3, No. 28. Washington,
DC: National Acad. Sci., 1923.
Diederichsen, F.-E. "Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz." Abh. Math. Sem. Hanisches Univ. 13,
357-412, 1940.
Lam, T. Y. and Leung, K. H. "On the Cyclotomic Polynomial ."
Amer. Math. Monthly 103, 562-564, 1996.
Lehmer, E. "On the Magnitude of the Coefficients of the Cyclotomic Polynomial."
Bull. Amer. Math. Soc. 42, 389-392, 1936.
McClellan, J. H. and Rader, C. Number Theory in Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,
1979.
Migotti, A. "Zur Theorie der Kreisteilungsgleichung." Sitzber. Math.-Naturwiss.
Classe der Kaiser. Akad. der Wiss., Wien 87, 7-14, 1883.
Nagell, T. "The Cyclotomic Polynomials" and "The Prime Divisors of the Cyclotomic Polynomial." §46 and 48 in Introduction
to Number Theory. New York: Wiley, pp. 158-160 and 164-168, 1951.
Nicol, C. "Sums of Cyclotomic Polynomials." Apr. 26, 2000. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0004&L=nmbrthry&T=0&F=&S=&P=2317.
Riesel, H. "The Cyclotomic Polynomials" in Appendix 6. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser,
pp. 305-308, 1994.
Schroeder, M. R. Number Theory in Science and Communication: With Applications in Cryptography, Physics,
Digital Information, Computing, and Self-Similarity, 3rd ed. New York: Springer-Verlag,
p. 245, 1997.
Séroul, R. "Cyclotomic Polynomials." §10.8 in Programming
for Mathematicians. Berlin: Springer-Verlag, pp. 265-269, 2000.
Sloane, N. J. A. Sequences A013594, A010892, A054372,
and A075795 in "The On-Line Encyclopedia
of Integer Sequences."
Trott, M. "The Mathematica Guidebooks Additional Material: Graphics
of the Argument of Cyclotomic Polynomials." http://www.mathematicaguidebooks.org/additions.shtml#N_2_03.
Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 8
and 224-225, 1991.
Wolfram, S. A
New Kind of Science. Champaign, IL: Wolfram Media, 2002.
No comments:
Post a Comment